Adaptor function of PapF depends on donor strand exchange in P-pilus biogenesis of Escherichia coli.

نویسندگان

  • Yvonne M Lee
  • Karen W Dodson
  • Scott J Hultgren
چکیده

P-pilus biogenesis occurs via the highly conserved chaperone-usher pathway and involves the strict coordination of multiple subunit proteins. All nonadhesin structural P-pilus subunits possess the same topology, consisting of two domains: an incomplete immunoglobulin-like fold (pilin body) and an N-terminal extension. Pilus subunits form interactions with one another through donor strand exchange, occurring at the usher, in which the N-terminal extension of an incoming subunit completes the pilin body of the preceding subunit, allowing the incorporation of the subunit into the pilus fiber. In this study, pilus subunits in which the N-terminal extension was either deleted or swapped with that of another subunit were used to examine the role of each domain of PapF in functions involving donor strand exchange and hierarchical assembly. We found that the N-terminal extension of PapF is required to adapt the PapG adhesin to the tip of the fiber. The pilin body of PapF is required to efficiently initiate assembly of the remainder of the pilus, with the assistance of the N-terminal extension. Thus, distinct functions were assigned to each region of the PapF subunit. In conclusion, all pilin subunits possess the same overall architectural topology; however, each N-terminal extension and pilin body has specific functions in pilus biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mechanism of P pilus termination in uropathogenic Escherichia coli.

P pili are important adhesive fibres that are assembled by the conserved chaperone-usher pathway. During pilus assembly, the subunits are incorporated into the growing fibre by the donor-strand exchange mechanism, whereby the beta-strand of the chaperone, which complements the incomplete immunoglobulin fold of each subunit, is displaced by the amino-terminal extension of an incoming subunit in ...

متن کامل

Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly.

The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a c...

متن کامل

Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis

Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we ...

متن کامل

Second Order Rate Constants of Donor-Strand Exchange Reveal Individual Amino Acid Residues Important in Determining the Subunit Specificity of Pilus Biogenesis

P pili are hair-like adhesive structures that are assembled on the outer membrane (OM) of uropathogenic Escherichia coli by the chaperone-usher pathway. In this pathway, chaperone-subunit complexes are formed in the periplasm and targeted to an OM assembly platform, the usher. Pilus subunits display a large groove caused by a missing β-strand which, in the chaperone-subunit complex, is provided...

متن کامل

The structure of the CS1 pilus of enterotoxigenic Escherichia coli reveals structural polymorphism.

Enterotoxigenic Escherichia coli (ETEC) is a bacterial pathogen that causes diarrhea in children and travelers in developing countries. ETEC adheres to host epithelial cells in the small intestine via a variety of different pili. The CS1 pilus is a prototype for a family of related pili, including the CFA/I pili, present on ETEC and other Gram-negative bacterial pathogens. These pili are assemb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 14  شماره 

صفحات  -

تاریخ انتشار 2007